E.H. Pechan & Associates, Inc.

Analysis of HEDD Unit Operation in the OTC in 2002

Maureen Mullen December 5, 2006

HEDD Data

- HEDD unit definition for analysis: EGU that operated < 720 hours during 2002 ozone season (May through September)</p>
- Based on EPA's CAMD published hourly emissions data for OTC States from 2002

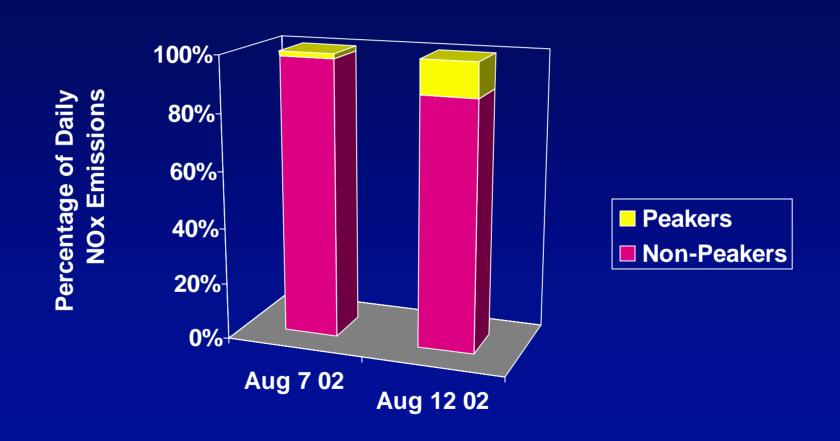
HEDD Data Analysis

- Totaled number of hours of operation for each unit in data set during ozone season
- Units in OTC operating <720 hours in ozone season were identified as peakers</p>
- Data from peakers were compared for 2 days:
 - » August 7, 2002—typical summer day
 - » August 12, 2002—HEDD
- Examined NOx emissions, NOx emission rate, hours of operation, and generation

OTC Ozone Season Peaking Units

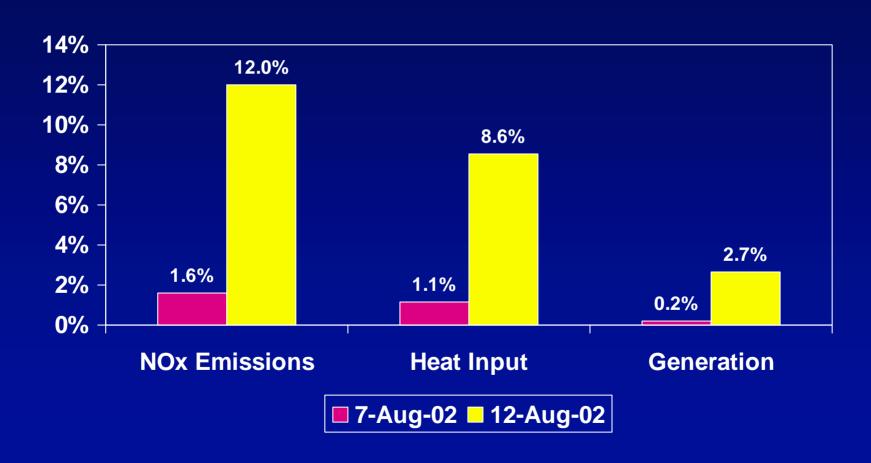
State	No. of Peakers	Avg. Ozone Season Capacity Factor	Avg. OSD NOx Rate (lb/MMBtu)
СТ	39	4.8%	0.16
DC	18	7.5%	0.44
DE	12	5.1%	0.20
MA	37	4.5%	0.28
MD	37	6.6%	0.32
ME	5	5.9%	0.33
NH	5	2.9%	0.68
NJ	102	7.1%	0.33
NY	155	8.3%	0.40
PA	110	5.1%	0.23
RI	1	16.5%	0.04
OTC	521	6.6%	0.32

Maximum Daily Temperatures on August 7 and 12, 2002

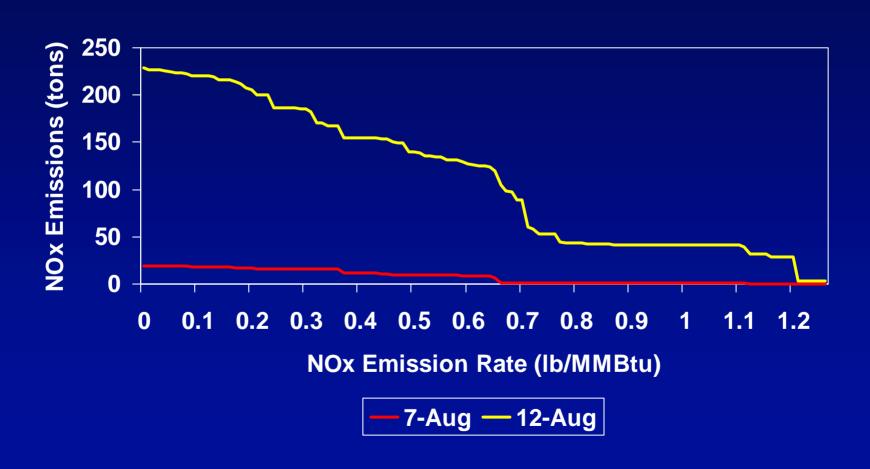


Data Summary

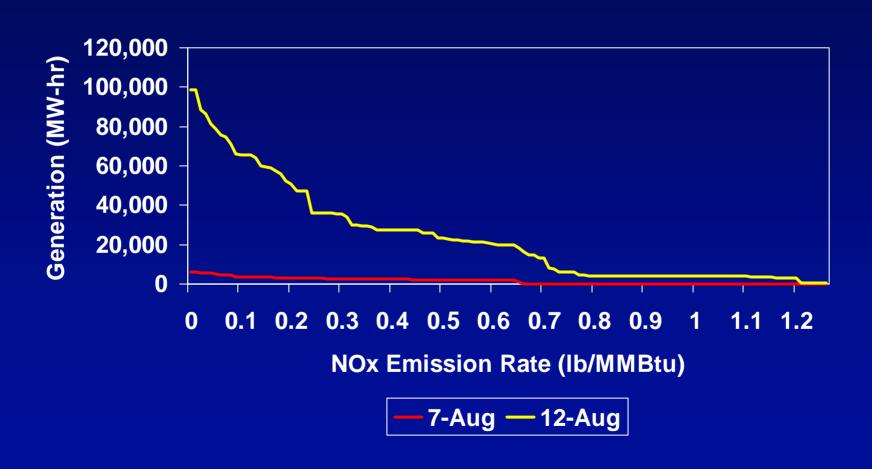
Units	Date	NOx Emissions (tpd)	Heat Input (1,000 MMBtu)	Generation (MW-hr)
All	7-Aug-02	1,189	9,960	3,183,042
	12-Aug-02	1,907	15,509	3,689,688
	7-Aug-02	19	113	5,897
Peakers	12-Aug-02	229	1,330	98,654
	7-Aug-02	1,170	9,846	3,177,145
Base	12-Aug-02	1,678	14,179	3,591,034



Percentage of NOx Emissions from Peakers



OTC Peaking Unit Percent of Total OTC EGUs



Cumulative NOx Emissions from OTC Peaking Units

Cumulative Generation from OTC Peaking Units

Interpreting Data

- Strategies that either reduce the NOx emission rate of the HEDD units or reduce demand from units with highest emission rates could provide significant NOx reductions
 - For example, reducing about 20,000 MW-hr demand from highest-emitting units could reduce 125 daily tons of NOx with highest emitters at 0.6 lb/MMBtu (equivalent to reducing about 7% of total EGU emissions on Aug 12)

Summary

- Peakers can be identified based on usage patterns
- Peakers account for a more than proportional share of increased NOx in comparison to the additional generation provided
- Strategies to reduce overall demand and/or control emission rates from peakers on HEDDs can significantly reduce NOx emissions on these days